Effect of N-linked glycosylation on the aspartic proteinase porcine pepsin expressed from Pichia pastoris.
نویسندگان
چکیده
A study was undertaken to examine the effects of N-linked glycosylation on the structure-function of porcine pepsin. The N-linked motif was incorporated into four sites (two on the N-terminal domain and two on the C-terminal domain), and the recombinant protein expressed using Pichia pastoris. All four N-linked recombinants exhibited similar secondary and tertiary structure to nonglycosylated pepsin, that is, wild type. Similar K(m) values were observed, but catalytic efficiencies were approximately one-third for all mutants compared with the wild type; however, substrate specificity was not altered. Activation of pepsinogen to pepsin occurred between pH 1.0 to 4.0 for wild-type pepsin, whereas the glycosylated recombinants activated over a wider range, pH 1.0 to 6.0. Glycosylation on the C-terminal domain exhibited similar pH activity profiles to nonglycosylated pepsin, and glycosylation on the N-domain resulted in a change in activity profile. Overall, glycosylation on the C-domain led to a more global stabilization of the structure, which translated into enzymatic stability, whereas on the N-domain, an increase in structural stability had little effect on enzymatic stability. Finally, glycosylation on the flexible loop region also appeared to increase the overall structural stability of the protein compared with wild type. It is postulated that the presence of the carbohydrate residues added rigidity to the protein structure by reducing conformational mobility of the protein, thereby increasing the structural stability of the protein.
منابع مشابه
Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris
BACKGROUND The methylotrophic yeast, Pichia pastoris, is widely used as a useful experimental tool in protein engineering and production. It is common for proteins expressed in P. pastoris to exhibit N-glycosylation. In recent years, glycosylation studies in P. pastoris have attracted increasing attention from scholars. Rhizopus chinensis lipase (RCL) is one of the most important industrial lip...
متن کاملExpression of Gp63 Gene from NIH Strain of Leishmania major in Pichia pastoris
Leishmaniasis is a major infectious disease of considerable public health in more than 86 countries around the world. Several approaches toward vaccine development against this disease have been taken. Glycoprotein (gp63) is conserved among diverse species of Leishmania and has induced immunological responses in murine models. Therefore, this glycoprotein has been considered as a second generat...
متن کاملEvaluation of pH/buffering conditions effect on the optimization of Recombinant Human Erythropoietin expression in the methylotrophic yeast, Pichia pastoris
Expression of recombinant proteins and drugs in Pichia pastoris has been in development since the late 1980s and the number of recombinant proteins produced in P. pastoris has increased significantly in the past several years. Unlike bacteria, this strain is capable of producing complex proteins with post translational modifications such as correct folding, glycosylation, proteolytic maturation...
متن کاملIdentification and Functional Characterization of Glycosylation of Recombinant Human Platelet-Derived Growth Factor-BB in Pichia pastoris
Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-...
متن کاملRole of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris
N-Glycosylation is a posttranslational modification commonly occurred in fungi and plays roles in a variety of enzyme functions. In this study, a xylanase (Af-XYNA) of glycoside hydrolase (GH) family 10 from Aspergillus fumigatus harboring three potential N-glycosylation sites (N87, N124 and N335) was heterologously produced in Pichia pastoris. The N-glycosylated Af-XYNA (WT) exhibited favorabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glycobiology
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2004